
The RF Line UHF Power Transistor

Designed primarily for wideband, large-signal output and driver amplifier stages to 1000 MHz.

- Designed for Class A Linear Power Amplifiers
- Specified 19 Volt, 1000 MHz Characteristics: Output Power — 3.5 Watts Power Gain — 10 dB, Small–Signal
- Built-In Matching Network for Broadband Operation
- Gold Metallization for Improved Reliability
- Diffused Ballast Resistors

10 dB, 1000 MHz 3.5 W BROADBAND UHF POWER TRANSISTOR

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	VCEO	28	Vdc
Collector-Base Voltage	VCBO	50	Vdc
Emitter-Base Voltage	VEBO	3.5	Vdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	22 0.125	Watts W/°C
Operating Junction Temperature	ТJ	200	°C
Storage Temperature Range	T _{stg}	-65 to +200	°C
HERMAL CHARACTERISTICS			
	0	M	11

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case ($T_C = 70^{\circ}C$)	$R_{\theta JC}$	8	°C/W

ELECTRICAL CHARACTERISTICS

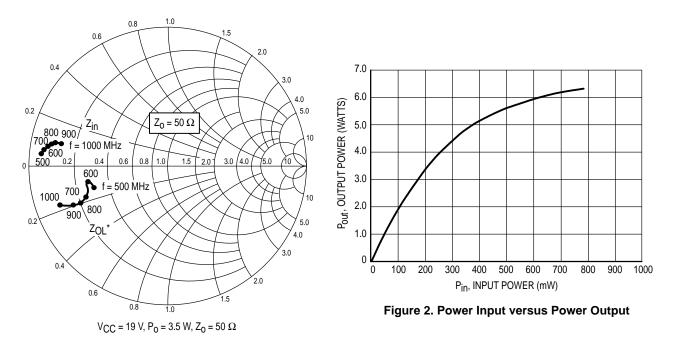
Characteristic	Symbol	Min	Тур	Max	Unit			
OFF CHARACTERISTICS								
Collector–Emitter Breakdown Voltage ($I_C = 10 \text{ mA}, I_B = 0$)	V _(BR) CEO	28	_	_	Vdc			
Collector–Emitter Breakdown Voltage ($I_C = 10 \text{ mA}, V_{BE} = 0$)	V(BR)CES	50	_	_	Vdc			
Collector–Base Breakdown Voltage ($I_C = 10 \text{ mA}, I_E = 0$)	V(BR)CBO	50	-	-	Vdc			
Emitter–Base Breakdown Voltage ($I_E = 5 \text{ mA}, I_C = 0$)	V(BR)EBO	3.5	-	-	Vdc			
Collector Cutoff Current (V _{CB} = 30 V, I _E = 0)	ICBO	_	_	10	mAdc			

(continued)

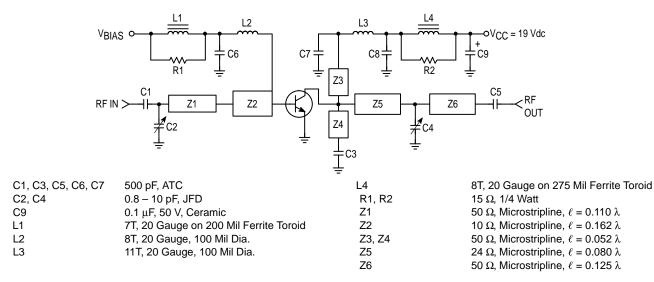
ELECTRICAL CHARACTERISTICS — continued

Characteristic	Symbol	Min	Тур	Max	Unit	
ON CHARACTERISTICS						
DC Current Gain (I _C = 250 mA, V_{CE} = 5 V)	hFE	20	-	90	-	
DYNAMIC CHARACTERISTICS						
Output Capacitance ($V_{CB} = 24 \text{ V}, I_E = 0, f = 1 \text{ MHz}$)	C _{ob}	-	-	15	pF	
FUNCTIONAL TESTS						
Common–Emitter Amplifier Small–Signal Gain (V _{CE} = 19 V, P _{in} = 1 mW, f = 1 GHz, I _C = 600 mA)	G _{SS}	10	-	-	dB	
Load Mismatch (V _{CE} = 19 V, I _C = 600 mA, P _{OUt} = 3.5 W, f = 1 GHz, Load VSWR = ∞ :1, All Phase Angles)	ψ	No Degradation in Output Power				
Overdrive (V _{CE} = 19 V, I _C = 600 mA, f = 1 GHz) (No degradation)	Pinover	-	-	1.75	W	

TYPICAL CHARACTERISTICS


Table 1. Common Emitter S–Parameters

VCE	lc	f	S,	11	S	21	S.	12	S	22
(Volts)	(mA)	(GHz)	Mag	∠φ	Mag	$\angle \phi$	Mag	∠φ	Mag	$\angle \phi$
19	600	0.5	0.91	174	1.78	53	0.03	23	0.55	-164
		0.6	0.9	173	1.64	47	0.03	21	0.58	-170
		0.7	0.87	171	1.53	36	0.03	19	0.63	-159
		0.8	0.85	168	1.51	24	0.03	15	0.68	-157
		0.9	0.82	168	1.49	10	0.03	5	0.74	-158
		1	0.78	168	1.5	-7	0.03	-4	0.83	-160


Table 2. Z_{in} and Z_{OL}* versus Frequency V_{CC} = 19 V, P_c = 3.5 W

Freq.	ZO	L*	Z _{in} (Ohms)		
(MHz)	Re	Im	Re	Im	
500	14.6	-6.31	2.36	2.53	
600	13.2	-4.07	2.74	3.18	
700	11.7	-8.95	3.36	4.14	
800	9.95	-9.65	4.12	5.13	
900	7.72	-9.72	4.99	5.33	
1000	4.67	-8.74	6.36	5.04	

Z_{OL}* = Conjugate of the optimum lead impedance into which the device output operates at a given frequency, output power and voltage.

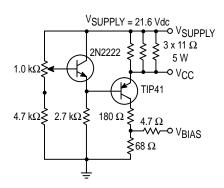
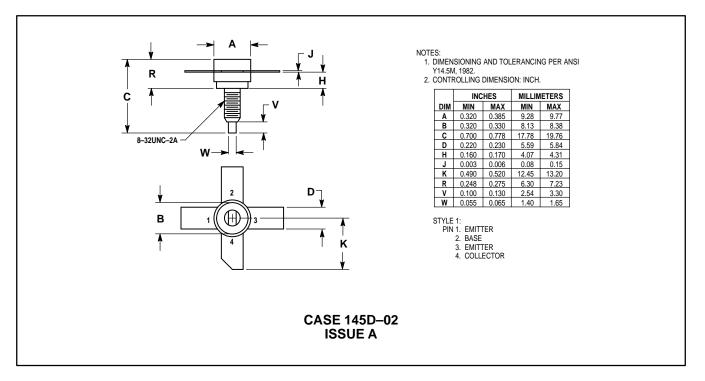



Figure 4. Bias Circuit

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and *O* are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1, Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488

Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 1–602–244–6609 – US & Canada ONLY 1–800–774–1848 – http://sps.motorola.com/mfax

INTERNET: http://motorola.com/sps

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

Mfax is a trademark of Motorola, Inc.